
TapScript Compiler
Assuming basic knowledge of Taproot, TapTree, TapScript
and high-level overview of Miniscript.

Given an arbitrary policy , our goal is to compile it to output a Taproot
Descriptor which is:

 Cost-Effective where this cost is defined later-on in the document.
 Private, where we try to reveal as little information (by obscuring

the need for revealing scripts by seperating them in TapLeaves)
while keeping our compilation sound.

Taproot Output Structure and how it's
handled for Miniscript
To spend a Taproot Output, either satisfy the internal_key or a valid
script-path spend.

Internal Key Spend

Assuming knowledge of internal_key in Taproot outputs, we extract the
most-probable public key from the policy which can single-handedly
spend all the funds. Otherwise, an unspendable key (which can't be
satisfied) is set.

p

Script-Path Spend

A script path spend in a TapTree implies we choose a single leaf-script
to satisfy. This gives us the idea to construct a disjunctive form over a
given policy (thanks to the policy language grammar), leaf nodes of
which serve as the building-blocks of the constructed TapTree.

Private Compilation
Root-level disjunctive enumeration of the given policy over and

 and compilation of the resulting list of (sub-policies →
respective miniscript compilation) into the TapTree by Huffman
encoding over probabilities.

Upcoming� Root-level disjunctive enumeration strategies for
.

Efficient Compilation
We are to construct the best cost-efficient TapTree compilation for our
given policy. Owing to the exponential complexity of constructing every
possible TapTree from the list of miniscript compilations, we resort to
using heuristics.

p or()

thresh(1, …)

thresh(k, …)

Huffman Encoding

Heuristic� Change the merge part of Huffman Algorithm.
During merge of intermediate-TapTrees (say and
TapTree/Leafs) in Huffman Encoding Algorithm, consider
optimal among both:

 TapTree(A, B)
 TapLeaf(compilation!(or(policy_A,policy_B)))

Def. TapTree Cost is the expected average-satisfaction cost for a given
TapTree.

() = .

Claim. Constructing the TapTree with and as children nodes () is
more cost-efficient than ().

Proof. Consider TapLeaves and , and let their parent compilation
(as defined by ()). Let be corresponding script costs for all
leaf-scripts in respective trees, be height of sub-trees and

, are the respective probabilities (by
construction) and be their average-satisfaction costs. We have

 .
Since height of the parent tree is one more than the the maximum
height of either children trees.

A B

TapLeaf Cost T pT × (sT + 33 + 32hT + cT)

A B 1.

2.

A B N

2. sA, sB, sN

hA,hB,hN A

B pA, pB, pN pN = pA + pB

cA, cB, cN

hN = max(hA,hB) + 1 ⟹ hN > hA,hB

cN := E[Satisfaction cost of miniscript in leaf node N]

≥ E[Satisfaction cost for child node + CA/B]

≥ E[Satisfaction cost for child node]

=
pA

pN
cA +

pB

pN
cB

⟹ pNcN ≥ pAcA + pBcB (2)

where is the extra cost incurred for choosing which node to
satisfy in the compiled miniscript or_{i,b,c,d}(A,B) decoded to
bitcoin script and the probabilities are normalized in the last
step because the probabilities correspond according to the odds in
the or_{i,b,c,d} fragment.

 .
The script size for the parent compilation is greater than sum of
respective children as it is evident from the bitcoin script decoding
of or_{i,b,c,d} fragments (extra OPCODES�.

These gives us:

This case happens with all the valid miniscripts containing atleast the
-byte PublicKey.
The valid miniscripts with script-size less than must contain only

CA/B

pA, pB

sN ≥ sA + sB

pNsN > (pA + pB)(sA + sB)

⟹ pAsA + pBsB − pNsN < −pAsB − pBsA

pNhN = (pA + pB) ∗ max(hA,hB) + 1

= pA max(hA,hB) + pB max(hA,hB) + pN

> pAhA + pBhB + pN

⟹ pAhA + pBhB − pNhN ≤ pN

(4)

(5)

TapLeaf cost(A) + TapLeaf cost(B) − TapLeaf cost(N)

= (pAsA + pBsB − pNsN) + 32

× (pAhA + pBhB − pNhN) + (pAcA + pBcB − pNcN)

≤ 32 × (pAhA + pBhB − pNhN)

+ (pAsA + pBsB − pNsN)

≤ 32 × pN + (pAsA + pBsB − pNsN)

≤ 32 × pN − pAsB − pBsA

(from (2))

(from (5))

(from (4))

Case 1. sA ≥ 32, sB ≥ 32

⟹ 32pN − pAsB − pBsA ≤ 32(pA + pB) − 32pA − 32pB ≤ 0

⟹ Tapleaf cost(N) ≥ Tapleaf cost(A) + Tapleaf cost(B)

33

32

pk_h, but intuitively we can see that the satisfaction for this case must
contain the key as well as hash which seems more inefficient.

Consider the two leaf script compilations and
(both having same probabilities). For

the policy we have three possible choices to
TapTree compilation (generally):

 TapLeaf()
 TapTree(Leaf(), Leaf())
 TapTree(Leaf(), Leaf())

From case (), is more efficient than .
Besides this, considering Schnorr signatures and byte size after
serialization respectively,

where the size of OP_CODES are considered according to c:pk_h
bitcoin script serialization.

Thus, we can say is more efficient than , and that it is always
more cost-efficient to seperate/ enumerate the policy into different
TapLeaves.
Hence, we can safely say that the private compilation is also indeed
cost-efficient.

A := pk(PublicKey)

B := pkh(PublicKeyHash) pA = pB

or(polC, pk(PublicKey))

ori/b/c/d(msC, pk(PublicKey))

msC pk(PublicKey)

msC pkh(PublicKeyHash)

(1) smsC ≥ 32, sA ≥ 32 (2.) (1.)

TapTree cost(3) − TapTree cost(2)

= TapLeaf cost(3)msC + TapLeaf cost(3)pk
− TapLeaf cost(3)msC − TapLeaf cost(3)pkh
= ppkh × (cpkh + 32 ∗ hpkh + spkh) − ppk × (cpk + 32 ∗ hpk + spk)

= pB × (cB + 32 ∗ hB + sB) − pA × (cA + 32 ∗ hA + sA)

= pA × (cB − cA + sB − sA)

= pA × (Secret Keysz + PublicKeysz − PublicKeysz

+ PublicKeyHashsz + OP_CODESpkh − PublicKeysz)

= pA × (66 + 33 − 33 + 20 + 8 − 33) > 0

⟹ TapTree cost(3) > TapTree cost(2)

(2.) (3.)

